1,584 research outputs found

    Modeling Persistent Trends in Distributions

    Full text link
    We present a nonparametric framework to model a short sequence of probability distributions that vary both due to underlying effects of sequential progression and confounding noise. To distinguish between these two types of variation and estimate the sequential-progression effects, our approach leverages an assumption that these effects follow a persistent trend. This work is motivated by the recent rise of single-cell RNA-sequencing experiments over a brief time course, which aim to identify genes relevant to the progression of a particular biological process across diverse cell populations. While classical statistical tools focus on scalar-response regression or order-agnostic differences between distributions, it is desirable in this setting to consider both the full distributions as well as the structure imposed by their ordering. We introduce a new regression model for ordinal covariates where responses are univariate distributions and the underlying relationship reflects consistent changes in the distributions over increasing levels of the covariate. This concept is formalized as a "trend" in distributions, which we define as an evolution that is linear under the Wasserstein metric. Implemented via a fast alternating projections algorithm, our method exhibits numerous strengths in simulations and analyses of single-cell gene expression data.Comment: To appear in: Journal of the American Statistical Associatio

    Estimating label quality and errors in semantic segmentation data via any model

    Full text link
    The labor-intensive annotation process of semantic segmentation datasets is often prone to errors, since humans struggle to label every pixel correctly. We study algorithms to automatically detect such annotation errors, in particular methods to score label quality, such that the images with the lowest scores are least likely to be correctly labeled. This helps prioritize what data to review in order to ensure a high-quality training/evaluation dataset, which is critical in sensitive applications such as medical imaging and autonomous vehicles. Widely applicable, our label quality scores rely on probabilistic predictions from a trained segmentation model -- any model architecture and training procedure can be utilized. Here we study 7 different label quality scoring methods used in conjunction with a DeepLabV3+ or a FPN segmentation model to detect annotation errors in a version of the SYNTHIA dataset. Precision-recall evaluations reveal a score -- the soft-minimum of the model-estimated likelihoods of each pixel's annotated class -- that is particularly effective to identify images that are mislabeled, across multiple types of annotation error.Comment: ICML Workshop on Data-centric Machine Learning Research 202

    ObjectLab: Automated Diagnosis of Mislabeled Images in Object Detection Data

    Full text link
    Despite powering sensitive systems like autonomous vehicles, object detection remains fairly brittle in part due to annotation errors that plague most real-world training datasets. We propose ObjectLab, a straightforward algorithm to detect diverse errors in object detection labels, including: overlooked bounding boxes, badly located boxes, and incorrect class label assignments. ObjectLab utilizes any trained object detection model to score the label quality of each image, such that mislabeled images can be automatically prioritized for label review/correction. Properly handling erroneous data enables training a better version of the same object detection model, without any change in existing modeling code. Across different object detection datasets (including COCO) and different models (including Detectron-X101 and Faster-RCNN), ObjectLab consistently detects annotation errors with much better precision/recall compared to other label quality scores.Comment: ICML Workshop on Data-centric Machine Learning Researc

    Utilizing supervised models to infer consensus labels and their quality from data with multiple annotators

    Full text link
    Real-world data for classification is often labeled by multiple annotators. For analyzing such data, we introduce CROWDLAB, a straightforward approach to estimate: (1) A consensus label for each example that aggregates the individual annotations (more accurately than aggregation via majority-vote or other algorithms used in crowdsourcing); (2) A confidence score for how likely each consensus label is correct (via well-calibrated estimates that account for the number of annotations for each example and their agreement, prediction-confidence from a trained classifier, and trustworthiness of each annotator vs. the classifier); (3) A rating for each annotator quantifying the overall correctness of their labels. While many algorithms have been proposed to estimate related quantities in crowdsourcing, these often rely on sophisticated generative models with iterative inference schemes, whereas CROWDLAB is based on simple weighted ensembling. Many algorithms also rely solely on annotator statistics, ignoring the features of the examples from which the annotations derive. CROWDLAB in contrast utilizes any classifier model trained on these features, which can generalize between examples with similar features. In evaluations on real-world multi-annotator image data, our proposed method provides superior estimates for (1)-(3) than many alternative algorithms
    • …
    corecore